Development of foamed emulsion bioreactor for air pollution control.
نویسندگان
چکیده
A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of the process and proof of concept using a laboratory prototype revealed that the foamed emulsion bioreactor greatly surpasses the performance of existing gas-phase bioreactors. Experimental results showed a toluene elimination capacity as high as 285 g(toluene) m(-3) (reactor) h(-1) with a removal efficiency of 95% at a gas residence time of 15 s and a toluene inlet concentration of 1-1.3 g x m(-3). Oxygen limited the reactor performance at toluene concentration above about 0.7-1.0 g x m(-3); consequently, performance was significantly improved when pure oxygen was added to the contaminated air. The elimination capacity increased from 204 to 408 g x m(-3) h(-1) with >77% toluene removal at toluene inlet concentrations of 2-2.2 g x m(-3). Overall, the results show that the performance of the FEBR far exceeds that of currently used bioreactors for air pollution control.
منابع مشابه
Modeling of a foamed emulsion bioreactor: I. Model development and experimental validation.
Recently, a new type of bioreactor for air pollution control referred to as the foamed emulsion bioreactor (FEBR) has been developed. The process relies on the emulsion of an organic phase with a suspension of an actively growing culture of pollutant-degrading microorganisms, made into a foam with the air undergoing treatment. In the current paper, a diffusion and reaction model of the FEBR is ...
متن کاملContinuous operation of foamed emulsion bioreactors treating toluene vapors.
Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding strategies was explored. The FEBR exhibited high and steady toluene removal performance (removal efficiency of 89%-94%, elimination capacity of 214-226 g/m3h at toluene inlet concentration of 1 g/m3) for up to 360 h, when 20%...
متن کاملModeling of a foamed emulsion bioreactor: II. model parametric sensitivity.
The sensitivity of a conceptual model of a foam emulsion bioreactor (FEBR) used for the control of toluene vapors in air was examined. Model parametric sensitivity studies showed which parameters affect the removal of toluene (as model pollutant) in the FEBR the most significantly, and enabled definition of the limits of the process. Detailed examination of the results indicated that the proces...
متن کاملA bioactive foamed emulsion reactor for the treatment of benzene-contaminated air stream.
An adapted bioactive foamed emulsion bioreactor for the treatment of benzene vapor has been developed. In this reactor, bed clogging was resolved by bioactive foam as a substitute of packing bed for interfacial contact of liquid to gaseous phase. The pollutant solubility has been increased using biocompatible organic phase in liquid phase and this reactor can be applied for higher inlet benzene...
متن کاملCometabolic degradation of TCE vapors in a foamed emulsion bioreactor.
Effective cometabolic biodegradation of trichloroethylene (TCE) vapors in a novel gas-phase bioreactor called the foamed emulsion bioreactor (FEBR) was demonstrated. Toluene vapors were used as the primary growth substrate for Burkholderia cepacia G4 which cometabolically biodegraded TCE. Batch operation of the reactor with respect to the liquid feed showed a drastic decrease of TCE and toluene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2003